# M PCVD 合成 $\beta$ -C<sub>3</sub>N<sub>4</sub> 晶态薄膜

时东霞 马立平 张秀芳 袁 磊 (中科院 物理所凝聚态物理中心北京真空物理实验室) 顾有松 张永平 段振军 常香荣 田中卓 (北京科技大学材料物理系)

Crystalline  $\beta$ -C<sub>3</sub>N<sub>4</sub> Synthesized by M PCVD

ShiDongxia, MaLiping, Zhang Xiufang, Yuan Lei

(B eijing L aboratory of V acuum Physics, Center for Condensed M atter Physics, Institute of Physics Chinese A cademy of S ciences)

Gu Yousong, Zhang Yongping, Duan Zhenjun, Chang Xiangrong, Tian Zhongzuo (Department of Material Physics, Beijing University of Science and Technology)

#### Abstract

Carbon nitride film s were grown on Si and Pt substrates by m icrow ave plasma chem ical vapor deposition (M PCVD) method Scanning electron m icroscope (SEM) observations showed that the film s deposited on Si substrates consisted of densely populated hexagonal crystalline rods Scanning tunneling m icroscope (STM) showed that there were m any bunches of tip-like crystals arranged regularly in a certain direction in the film s on pt substrates Energy dispersive x<sup>-</sup>ray (EDX) analysis showed that the N/C ratios of the film s on Si substrates were in the range of 1.0 to 2.0 depending on the deposited condition, and the N/C ratios of the film s on Pt substrates were in the range of 1.8 to 1.3 X-ray diffraction experiments showed that the film s consisted of crystalline phase  $\beta C N_4$  Temperature dependent grow th experiments showed that the amount of SieN4 in the film s grown on Si substrates could be significantly reduced to negligible amount by controlling the substrate temperature. The film s on Pt substrates showed a high bulk modulus of 349 GPa in N ano indentor hardness tests

摘要采用微波等离子体化学气相沉积法 (M PCVD), 以N<sub>3</sub> CH<sub>4</sub> 作为反应气体合成碳氮 膜。通过控制反应温度 气体流量、微波功率 反应气压等工艺条件, 在 Si 和 Pt 基片上, 进行  $\beta$ CN<sub>4</sub> 晶态薄膜的合成研究。扫描电镜(SEM)下观察到生长在 Si 基底上的薄膜具有六角晶 棒的密排结构。扫描隧道显微镜(STM)下观察到在 Pt 基底上生长的碳氮薄膜由针状晶粒组 成。EDX 分析表明, 随沉积条件的不同, Si 基底上的氮碳薄膜中 N /C 在 1 0 到 2 0 之间; Pt 基底上生长的碳氮薄膜 N /C 在 0 8~ 1 3 之间。X 射线衍射分析(XRD)发现薄膜中含有  $\beta$  CN<sub>4</sub> 和  $\alpha$ CN<sub>4</sub>

关键词: M PCVD  $\beta$ -C<sub>3</sub>N<sub>4</sub> 碳氮薄膜

一、引 言

 $\beta C_{N_4}$ 是由M. L. Cohen 和A. Y. L iu 从第一性原理计算出的一种超硬材料<sup>[1~3]</sup>。世界 上有许多实验室都在致力于  $\beta C_{N_4}$ 的研究工作, 所采用的实验方法也很多, 例如离子注入、离 子束辅助溅射、电子回旋共振微波等离子体沉积法(ECR M PCVD)、物理或化学气相沉积法、 脉冲激光融蚀和RF 放电等等。经过近十年的艰苦努力,在理论计算和实验合成两方面都取得 了比较大的进展<sup>[4~11]</sup>。但是到目前为止,仍然没有足够的证据证明合成了晶态 βC<sub>3</sub>N<sub>4</sub> 薄膜。

我们采用微波等离子体化学气相沉积法 M PCVD), 在 Si 和 Pt 基底上进行了碳氮薄膜的 合成。对薄膜的表面形貌、化学成分、晶体结构等作了分析。结果表明, 实验合成了晶态碳氮薄 膜。

# 二、实验方法

合成实验在 (M PCVD) 系统中进行, 反应气体由高纯氮气 (N<sub>2</sub>) 和甲烷 (CH<sub>4</sub>) 组成。本底真 空度达到  $10^{-4}$ Pa, 反应腔中的气压由机械泵和调节阀门控制, 工作气压设定在 3000Pa。反应温 度由红外测温仪测定, 反应温度控制在 800~1000 之间。CH<sub>4</sub> 流量在 1 scm 左右, N<sub>2</sub> 流量在 100 scm 左右。

三、实验结果和讨论

## 1. 表面形貌

图 1 所示是用 Hitachi S-4200 扫描电子显 微镜(SEM)得到的在 Si 基底上沉积的碳氮薄 膜的表面形貌象。可以发现,薄膜表面有许多六 角晶棒组成,长 2~ 3nm,直径 0 7nm 左右。这 些晶棒紧密地排列在基底上。图 2(1)是 Pt 上 沉积的碳氮薄膜的 SEM 表面形貌象,薄膜基 本上是连续的,但没有规则的外形。为了进一步 研究它的形貌,利用 STM 在更大放大倍数下 进行观察,如图 2(2)所示,沉积在 Pt 基底上的 碳氮薄膜是由沿一定方向排列的针状晶粒组成 的。STM 实验所用仪器是国产 CSTM 9300a。

2. 化学成分

采用能量散射 X 射线(EDX)测定碳氮薄



图 2(1) SEM 形貌象







图 2(2) STM 形貌象

图 2 Pt 基底上碳氮薄膜的形貌象 Fig 2 In ages of carbon nitride film s on Pt substrates 膜的化学成分。所使用的仪器是 Hitachi S-1000 4200 扫描电子显微镜(SEM)上带有超薄窗口 900 家的Cxford 6566 探测器。这种超薄窗口在轻元 素的低能量 x-ray 通过时,能量损失很小,因 此,它可以测定轻元素,可以用作碳氮薄膜的成 分分析。分析表明,随着沉积条件的不同,Si基 底上薄膜的氮碳原子比N/C 在 1.0~202 间。同时还发现,薄膜表面规则排列的六角晶棒 上N/C 接近于 4/3。如图 3 所示为 Si 基底上沉 积的碳氮薄膜上六角晶棒的 EDX 谱线,计算 出 C、N、Si 的原子百分比分别为 31%、42%、Fig 27%,N/C约为 4/3,接近于 C\_N 4 的理论值,而



图 3 Si 基底上碳氮薄膜的 EDX 图谱 Fig 3 A typical EDX spectrum of carbon nitride film s deposited on Si substrates

随着沉积条件的不同, Pt 基底上薄膜中的氮碳原子比N /C 在 0.8~1.3 之间。

3. 晶体结构

20

X 射线衍射是在 R igaku D /M ax II roating anode x-ray diffractometer (12kW, Cu K<sub>a</sub> R adiation) 仪器上进行的。表 1 是 Si 基底上碳氮薄膜 XRD 图谱对应的衍射峰 d 值,  $\alpha$ -C M  $_{4}$   $\beta$ C M  $_{4}$  的理论计算值以及  $\beta$ S iN  $_{4}$  和 Si 的 JCPD S 卡片值也列在其中。可以看出碳氮薄膜中包括  $\alpha$ -C M  $_{4}$   $\beta$ C M  $_{4}$   $\beta$ S iN  $_{4}$   $\beta$  C M  $_{4}$  的低晶面指数、高强度峰几乎都出现在图谱中,例如(110)、 (200)、(101)、(210)、(111)和(300)。 另外  $\alpha$ -C M  $_{4}$  的(110)、(102)、(210)、(112)、(300)和  $\beta$ C M  $_{4}$  的(110)、(101)、(210)、(111)、(300)是叠在一起的。值得说明的是  $\alpha$ -C M  $_{4}$  和  $\beta$ C M  $_{4}$  的一 些峰叠在一起,不能分开,也没有必要分开。表 2 是 Pt 基底上碳氮薄膜 XRD 图谱对应的衍射 峰 d 值。可见在 Pt 基底上同样也得到了  $\beta$ C M  $_{4}$  的低晶面指数、高强度峰的 d 值。同时也发现,  $\alpha$ -C M  $_{4}$  和  $\beta$ C M  $_{4}$  的一些峰叠在一起。但是在 Pt 基底上沉积碳氮薄膜时, Pt 不与 C 或 N 发生 反应,这一点优于 Si 基底。

4. 生长条件

在 Si 基底上生长碳氮薄膜时,由于 Si 容易与N 反应形成  $\beta$  Si N 4,给薄膜成分分析带来影响,因此总是希望  $\beta$  Si N 4 的含量尽可能少。实验中对相同生长条件的碳氮薄膜分析表明,随着反应时间的增加,薄膜中的  $\beta$  Si N 4 相对含量逐渐减少。可见,在薄膜生长初期,  $\beta$  Si N 4 比较容易生长。随着碳氮薄膜加厚,  $\beta$  Si N 4 生长速度减慢,而  $\beta$  C N 4 生长速度加快。 $\beta$  Si N 4 主要处在基底上,而  $\beta$  C N 4 主要处在薄膜表面。

同时,反应温度也是影响薄膜中  $\beta$ SiN<sub>4</sub> 含量的一个重要因素。图 4 是在不同反应温度下 的一组 XRD 衍射曲线,反应温度分别是 805 、830 、870 。表 3 是对应的衍射峰 d 值与理 论计算值的比较。可见,随着反应温度的增加, $\beta$ SiN<sub>4</sub> 生长很快。反应温度是影响碳氮薄膜质 量的一个重要因素,合适的反应温度可以大大降低  $\beta$ SiN<sub>4</sub> 的含量,而大大提高  $\beta$ CiN<sub>4</sub> 的含 量。

### 5. 薄膜硬度

在 N ano indenter (N ano II)上进行薄膜硬度测试。测试结果表明: Si 上的 C<sub>3</sub>N<sub>4</sub> 体弹性模量为 177GPa。Pt 上的 C<sub>3</sub>N<sub>4</sub> 体弹性模量为 349GPa, 距理论计算值(427GPa)不远, 低于金刚石 (443GPa)的体弹性模量, 接近 c-BN (367GPa)的体弹性模量。图 5 是 Pt 基底上碳氮薄膜的体 弹性模量测试结果。



1, 4, 5, 10, 14, 16, 17, 19— $\beta$ Si $_{3}$ N 4 5, 8, 11, 12, 14, 16, 18, 19, 20— $\beta$ C $_{3}$ N 4

图 4 不同反应温度下的碳氮薄膜 XRD 曲线 Fig 4 X-ray diffraction spatterns of carbon nitride films deposited at different temperatures







在 Si Pt 等基底上初步合成了晶态C<sub>3</sub>N₄薄膜,在 Si 上得到的是六棱形晶棒,在 Pt 上为一 束束的针状晶体。

论

薄膜成分: Si 基底上主要由C、N、Si 等物质组成。N /C 原子比在 1.0~20之间, 合适的生成条件可以降低薄膜表面  $\beta$ SiN<sub>4</sub>的含量; Pt 基底上由C、N 组成,N /C 原子比在 0.8~13之间。

XRD 分析表明薄膜主要由  $\alpha \in \mathbb{N}_4$  及  $\beta \in \mathbb{N}_4$  组成的  $C \otimes \mathbb{N}_4$  混合相, 但难以将两者分开。

Pt 上 C<sub>3</sub>N<sub>4</sub> 体弹性模量达到 349GPa, 低于理论计算值(427GPa)。

表1 Si基底上的碳氮薄膜 XRD 结果与理论计算值的对照

Table 1 The observed X-ray spectrum from a film deposited on Si substrates, and the calculated spectrum

| 实验值                                                                                                               |                                                      |                                                                                                                                                                         |                                                                                                                |                                                                                                       | 计算                                                                                                                                                 | ßs                                                                               | β-Si₃N 4                                                                                                  |                                                      | 单晶硅                                                                     |     |        |
|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------|-----|--------|
| No                                                                                                                | 2 <b>0</b>                                           | d (Å )                                                                                                                                                                  | I/ I0                                                                                                          | $\alpha$ C <sub>3</sub> N <sub>4</sub> a= 6 4665 (Å)<br>c= 4 7097                                     |                                                                                                                                                    | $\beta C_{3N_{4}} a = c = 2$                                                     | JCPD S1983<br>33-1160                                                                                     |                                                      | 5-0565                                                                  |     |        |
|                                                                                                                   |                                                      |                                                                                                                                                                         |                                                                                                                | hk1                                                                                                   | d (Å )                                                                                                                                             | hk1                                                                              | d (Å )                                                                                                    | hkl                                                  | d(Å)                                                                    | hkl | d(Å)   |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 6 430<br>3 779<br>3 257<br>2 712<br>2 674<br>2 477<br>2 324<br>2 267<br>1 996<br>1 997<br>1 867<br>1 691<br>1 519<br>1 399<br>1 381<br>1 367<br>1 355<br>1 342<br>1 294 | 7<br>5<br>8<br>9<br>5<br>12<br>6<br>7<br>9<br>5<br>8<br>10<br>8<br>6<br>7<br>15<br>26<br>44<br>60<br>100<br>11 | 101<br>110<br>201<br>002<br>102<br>210<br>211<br>112<br>300<br>301<br>220<br>103<br>400<br>203<br>401 | 3 6045<br>3 2333<br>2 4068<br>2 3549<br>2 1717<br>2 1167<br>2 9306<br>1 9035<br>1 8667<br>1 7354<br>1 6166<br>1 5116<br>1 4000<br>1 3694<br>1 3420 | 110<br>200<br>101<br>210<br>111<br>300<br>220<br>310<br>400<br>221<br>311<br>311 | 3 2009<br>2 7720<br>2 2057<br>2 0954<br>1 9223<br>1 848<br>1 6004<br>1 5376<br>1 3860<br>1 3322<br>1 2954 | 100<br>110<br>200<br>101<br>210<br>111<br>300<br>310 | 6 583<br>3 800<br>3 293<br>2 660<br>2 489<br>2 310<br>2 1939<br>1. 8275 | 400 | 1. 357 |

| 实验值 |            |        |      |                                                            | 铂多晶体   |                              |                   |                |         |
|-----|------------|--------|------|------------------------------------------------------------|--------|------------------------------|-------------------|----------------|---------|
| No  | 2 <b>0</b> | d (Å ) | I/Io | $\alpha C_{3}N_{4} = 6\ 4665(\text{\AA})$<br>$c = 4\ 7097$ |        | $\beta C_{3}N_{4} a = c = 2$ | 6 4017(Å)<br>4041 | 4 <b>-</b> 802 |         |
|     |            | ~ * *  |      | hkl                                                        | d(Å)   | hkl                          | d(Å)              | hk1            | d(Å)    |
| 1   | 23 60      | 3 767  | 13   | 101                                                        | 3 605  |                              |                   |                |         |
| 2   | 26 04      | 3 419  | 13   | 101                                                        | A 005  |                              |                   |                |         |
| 3   | 28 40      | 3 140  | 20   | 110                                                        | 3 233  | 110                          | 3 201             |                |         |
| 4   | 29.14      | 3 064  | 40   |                                                            |        |                              |                   |                |         |
| 5   | 32 48      | 2 754  | 12   | 200                                                        | 2 800  | 200                          | 2, 772            |                | r       |
| 6   | 35.76      | 2 509  | 18   | 201                                                        | 2 407  |                              |                   |                |         |
| 7   | 39.16      | 2 298  | 22   | 102                                                        | 2 171  | 101                          | 2 095             |                |         |
| 8   | 39.88      | 2 259  | 100  | 210                                                        | 2 117  | 201                          |                   | -111           | 2 265   |
| 9   | 46 36      | 1. 957 | 2580 |                                                            |        |                              | 1. 922            | 200            | 1. 962  |
| 10  | 47.12      | 1. 927 | 33   | 211                                                        | 1. 931 | 111                          | 1. 844            |                |         |
| 11  | 48 24      | 1. 885 | 26   | 300                                                        | 1.867  | 300                          |                   |                |         |
| 12  | 52 20      | 1.751  | 14   | 301                                                        | 1. 735 |                              |                   |                |         |
| 13  | 55.92      | 1. 643 | 13   |                                                            |        |                              | 1. 600            |                |         |
| 14  | 57.16      | 1. 610 | 15   | 220                                                        | 1. 617 | 220                          | 1. 580            |                |         |
| 15  | 58 04      | 1. 588 | 13   | 212                                                        | 1. 574 | 210                          | 1. 538            |                |         |
| 16  | 60.56      | 1. 528 | 13   | 103                                                        | 1. 512 | 310                          | 1. 465            |                |         |
| 17  | 64.44      | 1. 445 | 14   |                                                            |        | 301                          |                   |                |         |
| 18  | 67.60      | 1. 385 | 57   |                                                            |        |                              | 1. 272            | 220            | 1. 387  |
| 19  | 73.04      | 1. 294 | 17   | 320                                                        | 1. 285 | 320                          |                   |                |         |
| 20  | 81.40      | 1. 181 | 6852 |                                                            |        |                              | 56)17             | 311            | 1. 1825 |
| 21  | 85.84      | 1. 131 | 19   |                                                            | 4      |                              |                   | 222            | 1. 1325 |

表 2 Pt 基底上的碳氮薄膜 XRD 结果与理论计算值的对照

Table 2 The observed X-ray spectrum from a film deposited on Pt substrates, and the calculated spectrum

表 3 在不同沉积温度下得到的碳氮薄膜的 XRD 衍射值比较(Si基底)

 Table 3
 The observed X-ray spectrum from film deposited on Si substrates at different temperature, and the calculated spectrum

|      | 805    |     | 830     |     | 870    |     | $\beta$ Si3N 4 |     |        | βC3N 4 |        |     |
|------|--------|-----|---------|-----|--------|-----|----------------|-----|--------|--------|--------|-----|
| N 0. | d(Å)   | L   | d(Å)    | I   | d (Å ) | Ι   | (hk l)         | I   | d(Å)   | (hk l) | d(Å)   | Ι   |
| 1    | 6 430  | 51  | 6 632   | 74  | 6 544  | 353 | (100)          | 34  | 6 580  |        |        |     |
| 2    | 4 619  | 50  | 4 609   | 20  | 4 544  | 23  | (100)          | 5.  | a 200  |        |        |     |
| 3    | 4 111  | 55  | 4 133   | 41  | 4 211  | 20  |                |     |        |        |        |     |
| 4    | 3.811  | 30  | 3.824   | 45  | 3 792  | 109 | (110)          | 35  | 3.800  |        |        |     |
| 5    | 3. 257 | 100 | 3. 290  | 158 | 3. 280 | 983 | (200)          | 100 | 3. 293 | (110)  | 3.20   | 36  |
| 6    | 3. 081 | 95  | 3. 118  | 50  | 3. 140 | 50  |                |     |        |        |        |     |
| 7    | 3.007  | 280 | 3. 039  | 135 | 3.064  | 172 |                |     |        |        |        |     |
| 8    | 2 712  | 104 | 2 738   | 45  | 2 703  | 268 |                |     |        | (200)  | 2 77   | 100 |
| 9    | 2 477  | 183 | 2 490   | 121 | 2 482  | 386 |                |     |        |        |        |     |
|      |        |     |         |     | 2 393  | 37  |                |     |        |        |        |     |
| 10   | 2 319  | 60  | 2 333 < | 37  | 2 361  | 35  | (111)          | 9   | 2 310  |        |        |     |
| 11   | 2 267  | 77  | 2 287   | 46  | 2 298  | 69  |                |     |        | (101)  | 2 21   | 63  |
| 12   | 2 089  | 113 | 2 096   | 58  | 2 105  | 69  |                |     |        | (210)  | 2 095  | 41  |
| 13   | 1. 966 | 37  | 1. 978  | 38  | 1. 991 | 28  |                |     |        |        |        |     |
| 14   | 1. 907 | 70  | 1. 916  | 43  | 1. 919 | 85  | (220)          | 8   | 1. 900 | (111)  | 1. 922 | 59  |
| 15   | 1.867  | 123 | 1. 876  | 72  | 1.886  | 76  |                |     |        |        |        |     |
| 16   | 1. 806 | 20  | 1. 821  | 17  | 1. 821 | 56  | (310)          | 12  | 1. 830 | (300)  | 1.848  | 42  |
| 17   | 1. 691 | 112 | 1. 699  | 19  | 1.710  | 45  | (301)          | 37  | 1. 750 | ()     |        |     |
| 18   | 1. 589 | 47  | 1. 605  | 41  | 1. 604 | 39  | (              |     |        | (220)  | 1. 600 | 2   |
| 19   | 1. 519 | 57  | 1. 527  | 32  | 1. 508 | 26  | (320)          | 15  | 1. 511 | (310)  | 1. 538 | 10  |
| 20   | 1. 468 | 26  | 1. 512  | 27  | 1. 478 | 87  |                |     |        | (301)  | 1. 465 | 12  |

# 参考文献

- 1 M. L. Cohen, Phys Rev. B, 1985, 32: 7988
- 2 A. Y. L iu and M. L. Cohen, Science, 1989, 245: 841
- 3 M. L. Cohen, Science, 1993, 261: 307

7

- 4 J. Ortega and O. F. Sankey, Phys Rev. B, 1995, 51: 2624
- 5 D. M. Teter and R. J. Hem ley, Science, 1996, 271: 53
- 6 M. Cote and M. L. Cohen, Phys Rev. B, 1997, 55: 5684
- 7 Ogata, J. F. D. Chubaci and F. Fujimoto, J. Appl Phys , 1994, 76: 3791
- 8 A. Hoffman H. Geller, I Gouzman, et al, Surf Coatings Technol, 1994, 68/69
- 9 Y. S. Cu,L. Q. Pan, X. R. Chang and Z Z Tian, J. M ater Sci Lett 1996, (15): 1355
- 10 Y. S Cu,L. Q. Pan, et al, Prog. Natural Sci , 1996, 6: 248
- 11 L. C. Chen, C. Y. Yang et al, Diamond and Related Materials, 1996, 5: 514