2006年 6月

文章编号: 1000-7032 (2006) 03-0417-04

常压 MOCVD 生长 Ga₂ O₃ 薄膜及其分析

戴江南,王 立,方文卿,蒲 勇,李 ^璠,郑畅达,刘卫华,江风益^{*}

(南昌大学教育部发光材料与器件工程研究中心, 江西南昌 330047)

摘要:以去离子水 (H₂O)和三甲基镓 (TM Ga)为源材料,用常压 MOCVD方法在蓝宝石 (0001)面上生长出 -Ga₂O₃薄膜。用原子力显微镜 (AFM)、X射线衍射 (XRD)以及二次离子质谱 (SM S)实验表征 Ga₂O₃外延 膜的质量。在 X射线衍射谱中有一个强的 Ga₂O₃ (102)面衍射峰,其半峰全宽 (FW HM)为 0.25 °,表明该 Ga₂O₃外延膜是 (102)择优取向。在二次离子质谱中除了 C, H, O和 Ga原子外,没有观测到其他原子。

关键词:金属有机化学气相沉积;氧化镓;原子力显微镜;X射线衍射;二次离子质谱
中图分类号:TN304.055
PACC: 6855;8115H
文献标识码:A

1 引 言

氧化镓 (Ga₂O₃)是一种宽禁带半导体材料, $E_{a} = 4.9 \text{ eV}$,其导电性能和发光特性^[1]长期以来 一直引起人们的注意。 -Ga,O, 是一种透明的氧 化物半导体材料^[2],在光电子器件方面^[3,4]具有 广阔的应用前景,可被用于 Ga基半导体材料的 绝缘层,以及近紫外线的透明电极。目前进行 Ga₂O₃薄膜的生长方法主要有:射频磁控溅射 (RFMS)^[5]、脉冲激光沉积 (PLD)^[6]、电子束蒸 发 (EBV)^[7]、分子束外延 (MBE)^[8]、金属有机化 学气相沉积 (MOCVD)^[9]等。根据 GaN 材料及蓝 光发光管研制和生产的经验, MOCVD法可能更 适合工业化生产和制作光电器件,因此,我们选取 MOCVD方法进行 Ga₂O₃ 薄膜的制备研究。 H.W. Kin等人^[9]用低压 MOCVD 方法在 Si(100) 衬底上制备出了 和 混相的 Ga₂O₃薄膜。目前 还未见到用 MOCVD 方法制备出单一相 Ga2O3薄 膜的报道。本文将报道用常压 MOCVD 方法制备 出单一相的 GaO3薄膜。

2 实 验

采用常压 MOCVD 生长 Ga₂O₃ 薄膜。衬底为 蓝宝石 (0001)晶面, TMGa为 Ga源, H₂O为氧源, N₂ 为载气,高频加热。衬底为免清洗衬底,直接 放入反应室,在氢气氛下高温处理 20 min后先在 500 左右生长约 15 mm的缓冲层,然后开始外 延生长 Ga₂O₃,通过控制反应源流量,在 700 左 右生长 20 min,得到 Ga₂O₃外延层厚度约 2 μm。

采用本原公司生产的原子力显微镜 (CSPM-3100 AFM)检测样品的表面形貌,测试范围为 30 µm x30 µm;采用日本理学 D/max-RC转靶 X射 线衍射仪检测样品的生长取向和结晶质量;采用 英国 Millbrook公司生产的二次离子质谱 (SMS) 仪检测样品的杂质含量。需要指出的是:在做各 项实验测试之前,均用三氯乙稀、丙酮、乙醇、去离 子水依次清洗了样品表面。

3 结果与讨论

3.1 AFM 分析

图 1是对蓝宝石上生长的 Ga₂O₃ 薄膜样品的 AFM 大范围扫描形貌图 (包括二维图、三维图和 剖面图),扫描范围为 30 µm ×30 µm。利用所得 的图像信息对薄膜的晶体结构、晶粒取向、表面不 平整度等进行分析讨论。从原子力显微结构来 看, Ga₂O₃ 薄膜呈柱状生长,其结构比较致密但表 面不平整,从剖面图可得该样品的平均不平整度 约为 40 nm, Ga₂O₃ 薄膜的晶粒尺寸为 30 ~ 40 nm,薄膜呈多晶态。

收稿日期: 2004-08-24; 修订日期: 2004-12-22

基金项目:国家 "863 计划纳米专项 (2003AA302160);国家信息工业电子发展基金 (2004125)资助项目

作者简介:戴江南(1980-),男,湖南人,在读博士研究生,主要从事半导体发光材料和器件的研究。

^{*:}通讯联系人; E-mail: daijiangnan2004@163.com, Tel: (0791)8304441, 13607047046, 8325572

图 1 Ga₂O₃ 薄膜的原子力显微镜形貌图

Fig 1 AFM images of Ga₂O₃ thin film. (a) 2-D image; (b) 3-D image; (c) cross-section profile.

3.2 XRD分析

样品的 X射线粉末衍射谱如图 2所示。在 衍射谱上 2 =41.75 有一个强衍射峰,对应着蓝 宝石衬底 (0006)晶向。将所得的衍射峰值数据 与标准 JCPDS-PDF卡片 (No. 11-370)对比后发 现,样品为单斜晶系的 $-Ga_2O_3$,其衍射谱上主要 出现的是处于 19.0 的 Ga_2O_3 (102)衍射峰,其半 峰全宽 (FWHM)为 0.25 °除此之外还有分别处 在 38.35 和 59.15 非常弱的 (113)与 (306)衍射 峰,这表明 Ga_2O_3 薄膜成择优取向的多晶状态,择 优取向为 (102)。

采用 Scherrer方程¹⁰¹根据 XRD 衍射峰的半峰全宽可计算 Ga_2O_3 薄膜的晶粒平均尺寸,即

$$D = \frac{0.9}{B\cos s}$$

其中,D为晶粒尺寸,为 X射线的波长 (0 154 056 nm), B 为半峰全宽,为衍射角。计算结果是 D = 32 nm,与原子力显微镜 (AFM)测量的结果 (30~40 nm)基本一致。

3.3 SMS分析

图 3是样品 Ga₂O₃ 薄膜的二次离子质谱图, 其中 (a)为阴离子图谱,(b)为阳离子图谱,(c)为 蓝宝石衬底生长的 GaN 薄膜的阳离子图谱。

在 Ga₂O₃ 薄膜阴离子图谱中,主要是 O 和 OH 的信息峰,其他杂质峰非常弱,这表明样品的 阴离子主要是 O ,从而说明样品具有较好的纯度。 为了较好地研究 Ga₂O₃ 薄膜的阳离子信息,将 Ga₂O₃ 薄膜的阳离子图谱与蓝宝石衬底生长的 GaN 薄膜的阳离子图谱进行了对比分析。在 Ga₂O₃ 薄膜 和 GaN 薄膜两个阳离子图谱中,主要是⁶⁰Ga⁺和 ⁷¹Ga⁺的信息峰,其他杂质峰均比较弱。从两者的 阳离子图谱中 (图 3(b),图 3(c))还发现,杂质峰 主要是由 C和 H所组成的有机团信号,造成这一

- 图 3 二次离子质谱图, (a) Ga₂O₃ 薄膜的阴离子图谱; (b) Ga₂O₃ 薄膜的阳离子图谱; (c)蓝宝石衬底生长的 GaN 薄膜 的阳离子图谱
- Fig 3 SMS spectra. (a) negative spectra of Ga₂O₃ film; (b) positive spectra of Ga₂O₃ film; (c) positive spectra of GaN film grown on sapphire.

现象的原因可能是: 生长时两者均用 TM Ga作为 Ga源,这样不可避免形成了 C和 H的有机团。

4 结 论

以 H₂O和 TMGa为源材料,用常压 MOCVD 系统在 700 条件下,在蓝宝石 (0001)衬底上生

长出了单一 相的 Ga₂O₃ 薄膜。X射线衍射实验 结果表明所生长的 Ga₂O₃ 样品是 (102)择优取向 的多晶薄膜, XRD和 AFM 表明 Ga₂O₃ 样品的晶 粒尺寸为 30~40 nm。样品的 SMS分析研究表 明样品具有较好的纯度。这种薄膜有可能作为今 后近紫外光电器件的透明电极。

参考文献:

- [1] BinetL, GourierD. Origin of the blue luminescence of -Ga₂O₃ [J]. J. Phys Chan. Solids, 1998, 59(8): 1241-1249.
- [2] Edwards D D, Mason TO, Goutenoir F, et al A new transparent conducting oxide in the Ga₂O₃-In₂O₃-SnO₂ system [J]. Appl Phys Lett, 1997, 70 (13): 1706-1708
- [3] Passlack M, Schubert E F, Hobson W S, *et al* Ga₂O₃ films for electronic and optoelectronic applications [J]. J. Appl Phys., 1995, **77**(2): 686-693.
- [4] Baughman R H, Zakhidov A A, Heer W A. Carbon nanotubes: the route toward applications [J]. Science, 2002, 297 (5582): 787-792.
- [5] Lang A C, Fleischer M, Meixner H. Surface modifications of Ga₂O₃ thin film sensors with Rh, Ru and Ir clusters [J]. Sens Actuators B, 2000, 66 (0925): 80-84.
- [6] Orita M, Hiramatsu H, Ohta H, et al Preparation of highly conductive, deep ultraviolet transparent -Ga₂O₃ thin film at low deposition temperatures [J]. Thin Solid Films, 2002, 411 (1-2): 134-139.
- [7] Al-Kuhaili M F, Durrani SM A, Khawaja E E, et al Optical properties of gallium oxide films deposited by electron-beam evaporation [J]. Appl Phys Lett, 2003, 83 (22): 4533-4535.
- [8] Passlack M, Hong M, Mannaerts J P. Quasistatic and high frequency capacitance-voltage characterization of Ga₂O₃-GaAs structures fabricated by in situ molecular beam epitaxy [J]. *Appl Phys Lett*, 1996, **68**(8):1099-1101.
- [9] Kin Hyoun Woo, Kin Nam Ho. Growth of gallium oxide thin films on silicon by the metal organic chemical vapor deposition method [J]. *Mater Sci Eng.* B, 2004, 110(1): 34-37.
- [10] Cullity B D. Elements of X-ray Diffractions [M]. Reading, MA: Addison-Wesley, 1978, 102.

Ga₂O₃ Thin Films Grown on Sapphire by Atmospheric Pressure MOCVD

DA I Jiang-nan, WANG Li, FANG Wen-qing, PU Yong, LI Fan,

ZHENG Chang-da, L U Wei-hua, J ANG Feng-yi

(Education M inistry Engineering Research Center for Lum inescence M aterial and Device, N anchang University, Nanchang 330047, China)

Abstract: Gallium oxide (Ga_2O_3) , a wide direct-gap semiconductor $(E_g - 4.9 \text{ eV})$, has recently attracted interests as a new material for a gas sensor, transparent conductor, luminescent phosphors, solar cells, electronic and optoeclectonic applications For Ga_2O_3 films growth, numerous deposition techniques including sputtering, electron-beam evaporation, molecular beam epitaxy (MBE), pulse-laser deposition (PLD), and metal organic chemical vapor deposition (MOCVD) have been employed. Among these techniques, MOCVD has many advantages for volume production and it has been proved to be excellent growth technique for - s especially for the nitrides

 Ga_2O_3 films used in this study were grown by a home-built vertical atmospheric pressure MOCVD system. Deionized water and trimethylgallium (TMGa) were used as the O and Ga sources, respectively, using nitrogen as the carrier gas Typical growth conditions were as follows: chamber pressure was 103.3 kPa The thickness of buffer layer is about 15 nm, growth temperature was 500 , epilayer growth temperature was 700 , and a total carrier gas flow rate was about 15 000 sccm. The thickness of the Ga₂O₃ layer was about 2 µm. Ga₂O₃ epilayer characteristics were investigated by AFM, X-ray diffraction (XRD) and secondary ion mass spectroscopy (SMS). The results of AFM indicated the Ga₂O₃ films grew up with columniation shape and the structure was relatively compact

The root mean square (RMS) roughness as determined by AFM (30 μ m ×30 μ m) of the film surface was about 40 nm. The Ga₂O₃ grain size was about 30 ~ 40 nm determined by AFM. X-ray diffraction spectrum showed that the FWHM of (102) diffraction peak was 0. 25 °, which indicated the good quality of -Ga₂O₃ film. The Ga₂O₃ grain size was calculated about 32 nm by Scherrer's formula, which was consistent with the result of AFM. The results of SMS showed that the Ga₂O₃ epitaxial films had good purity.

Key words: MOCVD; Ga₂O₃; AFM; XRD; SMS

Received date: 2004-08-24