Vol 32 No 5 Sep. 2010

doi 10 3969/j issn 1671- 7627. 2010. 05. 002

聚苯胺薄膜厚度的表征及原位生长

李冀蜀¹²,顾大伟¹,沈临江¹,杨南如²

(11南京工业大学理学院,江苏南京 210009, 21南京工业大学材料科学与工程学院,江苏南京 210009)

摘 要:以石英基片为衬底,分别在常压011MPa和500MPa高压条件下采用原位聚合法制备聚苯胺 (PANI)薄膜. 通过对 PAN I薄膜的厚度进行原子力显微镜的直接测量和光谱的间接表征,建立了薄膜厚度 d_f(m) 与薄膜 UV-V is吸收光谱中 400 mm处吸收强度 A₄₀₀间的关系: d_f = 548A₄₀₀(011MPa)及 d_f = 341A₄₀₀(500MPa).根据这一关系 进一步测量了薄膜的生长曲线,并通过扫描电镜(SEM)形貌观测和电导率测试,研究了原位聚合 PAN I薄膜在不同 合成压力下的生长及导电特性.

关键词:聚苯胺薄膜;厚度;压力;原位聚合;生长 中图分类号: O63312 文献标志码: A 文章编号: 1671-7627(2010)05-0006-06

Characterization of thickness and in situ growth of polyaniline films LIJ2shu^{1,2}, GU Da2we¹, SHEN Lin2jiang¹, YANG Nan2n²

(1. College of Sciences, Nanjing University of Technology, Nanjing 210009, China,

2 College of Materials Science and Engineering Nanjing University of Technology, Nanjing 210009, China)

Abstract Polyaniline (PANI) films were in situ polymerized on the quartz substrates under the ambient pressures 011MPa and 500MPa. The thickness of the films was directly measured by AFM and indirectly characterized by the absorption at the wave length 400 nm on UV2v isible spectra. The relationship between $d_f(nm)$ and the absorption A_{400} of PANI films was established, i e, $d_f = 548A_{400}$ for the films prepared at 011 MPa, and $d_f = 341A_{400}$ in the case of 500 MPa, respectively. Based on the relationship between d_f and A_{400} , the growth curves for PANI films were obtained. By the observation of SEM and the conductivities the growth process and the electrical property of the films prepared under different pressures were investigated.

K ey words polyaniline film; hickness; pressure; in 2situ polymerization; grow h

近年来导电聚苯胺 (PAN1)薄膜在实际应用领域 展现出越来越大的潜力, 人们对其的关注不断增强. 制 备 PANI薄膜的方法有多种. 相对于旋转涂膜^[1]、气相 沉积^[2]、团簇沉积^[3]、电化学聚合^[4]等薄膜制备技术, 原位聚合法工艺简单, 只需在含有苯胺单体的酸性溶 液中添加氧化剂即可实现苯胺的氧化聚合, 在衬底表 面形成导电 PANI薄膜^[5-6]. 同其他聚合反应一样, PAN薄膜的原位生长及其性能与合成条件 (如反应温度、压力以及氧化剂、掺杂剂种类等)紧密相关,研究和优化合成条件对改进薄膜的性能意义重大.

在研究薄膜生长的过程中,不可避免要涉及不同反应时期薄膜厚度的测量. PAN I薄膜厚度的测量 方法通常有以下 3种: 1)台阶轮廓仪测定^[7]; 2)原 子力显微镜测定^[8]; 3)光谱测定^[6 9-10].前 2种方法

基金项目: 国家自然科学基金资助项目 (10774076)

收稿日期: 2010-02-05

作者简介:李冀蜀 (1969)), 女, 重庆荣昌人, 副教授,主要研究方向为导电聚合物; 沈临江 (联系人), 教授, E2mail lishen@ njut edu en © 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

属于直接测量法,采用刻针在薄膜表面刻画出刻痕 (台阶),再对刻痕的深度进行测定以确定薄膜的厚 度.直接测量法虽然可以直接得到薄膜的实际厚度, 但对于极薄的薄膜试样 (如反应初期试样)由于存 在刻痕刻制的困难而不适用.第 3种测量方法属于 间接测量法.光谱测定法在测量极薄试样厚度时具 有明显的优势,可以得到薄膜的相对厚度,大大地拓 展薄膜厚度的测量范围.如何对光谱法测量膜厚的 结果进行定标,获得更为直接的实验结果成为评估 PANI薄膜生长的一个重要技术问题.

Stejskal等^[9]从实验上证实 PANI薄膜紫外光谱 中 400 m处吸收强度与薄膜厚度间存在线性关联. A yad等^[10]用 QCM 技术研究 PAN I薄膜生长时也发 现, PANI薄膜 345 m处紫外吸收强度与薄膜厚度间 存在相似的线性相关.从紫外 - 可见吸收光谱的测 试原理看,薄膜对某个确定波长光波的吸收与薄膜 厚度应该成线性比例关系.然而,测试条件的不同 (如灵敏度、视窗大小等)和试样本征性能(如表面 状况、薄膜致密度引起的色散等)的差异将影响定 标系数.本文分别在常压和高压条件下原位聚合 PANI薄膜,在尽可能消除测量误差的前提下对不同 厚度试样进行膜厚的直接测量和光谱的间接表征并 建立两者间的关系.在此基础上进一步研究 PANI 薄膜在常压和高压下的原位生长及相关性能.

1 实 验

以过硫酸铵 (APS)为氧化剂、HCI为掺杂剂,苯胺 单体与 APS的初始摩尔比为 1100B1125,分别在常压 011MPa和 500MPa高压条件下原位聚合 PANI薄膜^[7].

用 SH MADUZ UV3101PC紫外 - 可见分光光度 计 (UV2/is)对 PANI薄膜试样进行光谱分析,用 H D TACH I S- 4800场发射扫描电镜进行形貌表征,用 Benyuan CSPM - 3400原子力显微镜测量厚度 d_e 采 用四探针法测量薄膜试样的电阻 R,表面电极用导 电银漆 (HK W entworth Ltd ELECTROLUBE)制作, 电压测量用数字多用表 (Agilent 34401A).对宽度 为 b的薄膜试样,由 R = $\frac{1}{bd_f}$ # $\frac{1}{R}$ 计算得到薄膜的电 导率 (1是电压测量端之间的距离).

分别对 011MP 和 500MP 合成压力下不同反

- 2 结果与讨论
- 211 PAN I薄膜的光谱与形貌表征

应时间制备的 PANI薄膜试样进行 UV-V is吸收 光谱测试、结果如图 1和图 2所示、由图 1、图 2可 见:在 810~ 880 nm处各试样的吸收峰对应质子酸 掺杂的 PAN I极化子峰^[6,9],表明试样已处于掺杂 状态,具有导电性能,随着反应时间的增加,该吸 收峰的强度均呈增长趋势.相对于高压合成试样、 常压下原位聚合 PANI薄膜的极化子峰强度的增 长速度明显缓慢.在500 MPa高压条件下,当反应 时间为4mir时,基片表面已经开始出现具有掺杂 态本征吸收特征的 PAN I 膜层. 纵观 2 组光谱, 还 可以发现 500MPa高压下合成试样的极化子峰位 较常压下合成试样的峰位有红移现象发生.一般 来说,这种发生在 UV - V is 吸收光谱上的红移表 明对应试样的分子链共轭长度的增加.就 PANI材 料而言,分子链共轭长度的增加总是伴随着导电 性能的改善[7],这预示着高压条件下合成的 PANI 材料的导电性能可从本质上获得提高.

- 图 1 011M Pa压力条件下不同反应时间的 PANI薄膜的 紫外 - 可见吸收光谱
- Fig 1 UV2v is spectrum of PANI films prepared at 011 MPa with various reaction time

- 图 2 500 M Pa高压条件下不同反应时间的 PANI薄膜的 紫外 - 可见吸收光谱
- Fig 2 UV2v is spectrum of PANI films prepared at 500 MPa with various reaction time

7

© 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

图 3为 011MPa及 500MPa压力条件下 PAN I薄 膜形成过程的微观形貌变化状况. 由图 3可见: 在 011MPa合成压力下, 当反应时间为 30m in时, 基片 表面有少量 PAN I生成 (图 3(a)). 随着聚合反应的 进行, PAN I颗粒不断长大, 同时新的颗粒不断生成 (图 3(b)), 最终得到颗粒状形貌的 PAN I薄膜 (图 3 (c)). 此过程符合原位聚合 PAN I薄膜的生长特征. 这种颗粒形貌特征普遍被认为是由于 PAN I薄膜的 原位刷状生长机制所致^[6,11].

由图 3还可见: 500MPa高压合成条件下 PANI薄

(a) 0.1 MPa,30 min

(b) 0.1 MPa,40 min

(d) 500 MPa,2 min

(e) 500 MPa,4 min

(c) 0.1 MPa,90 min

(f) 500 MPa,30 min

图 3 不同合成压力、不同反应时间制备的 PAN I薄膜试样的 SEM Fig 3 SEM of PAN I films prepared under different pressures with various reaction time

212 PANI薄膜紫外吸收光强与厚度的线性关系

在 011MPa和 500MPa的压力合成条件下,控制 聚合时间制备不同厚度的 PANI薄膜试样.对同一 试样,分别采用紫外 - 可见分光光度计测试其光谱、 原子力显微镜测试其厚度.对薄膜厚度 d_i与 UV -V is吸收光谱中400 nm处的吸收强度 A₄₀₀进行关联, 得到的实验结果如图 4所示.对实验数据进行线性 拟合,在011MPa和 500MPa的合成压力下,拟合结果 (图 4中直线)分别为

$$\mathbf{d}_{\rm f} = \mathbf{k}_1 \, \mathbf{A}_{400} = \, 54 \, \mathbf{8} \mathbf{A}_{400} \tag{1}$$

$$\mathbf{d}_{\rm f} = \mathbf{k}_2 \, \mathbf{A}_{400} = \, 34 \, \mathbf{I} \mathbf{A}_{400} \tag{2}$$

按照 Stejskal等^[9]的观点,式(1),式(2)中比例 系数 k_1 、 k_2 与 PANI薄膜在 400 nm处的质量吸光系数 E_{00} 和薄膜的密度 Q PANI)有关,即 $k = \frac{1}{E_{00} Q PANI}$ 比较式(1)和式(2), 500MP 高压条件下合成的 PANI 薄膜的 k_2 值比 011MP 常压条件下的 k_1 值明显减小. 结合前面对薄膜表面形貌的 SEM 观测结果 (图 3), 可以认为高压合成薄膜试样致密的纳米网络状形貌, 导致 了 PANI 薄膜紫外吸光系数 E_{00} 以及密度 Q(PANI)的综合作用比常压合成试样有显著提高. A yad^{10]}在研究 PANI薄膜紫外吸收强度与薄膜厚 度间的线性关系时也指出,不同合成条件下制备的 PANI薄膜表面颗粒尺寸的差异会影响此比例系数 值的大小.

图 4 PAN I薄膜厚度 d₁与紫外吸收强度 A₄₀₀的关系 Fig 4 Relationship between the thickness d_f and absorption A₄₀₀ of PAN I film s

213 PANI薄膜的生长

利用不同反应时间的 PAN I薄膜的紫外 - 可见 光谱测量,以及光谱中 400 nm处的吸收强度 A₄₀₀与 薄膜厚度 d₄间的变换关系式 (1)、式 (2),得到原位 聚合 PAN I薄膜在常压 011 MP 和 500 MP 高压下的 生长曲线, 如图 5所示.

图 5 不同合成压力下 PAN I薄膜的生长曲线 Fig 5 Grow th of PAN I film s prepared under different pressures

原位聚合 PAN I薄膜的生长过程一般可划分为 诱导期、生长期和饱和期 3个阶段^[11]. 由图 5可见: 常压 011MP和 500MP。高压下 PAN I薄膜的形成都 符合这一生长特点. 但高压条件下 PAN I薄膜的生 长速率及产率等生长性能与常压条件下的情况明显 不同. 有关数据见表 1. 表 1中 d₆ D, R 分别是 PAN I 薄膜试样在饱和期内厚度、掺杂程度及电导率的平 均值. 鉴于 PAN I薄膜 UV-V is吸收光谱中极化子 峰的强度反映着试样掺杂程度的平均水平, H⁺掺杂 程度 D 由光谱测量数据计算得到^[13].

$$D = \frac{\$A}{A_{400}} = \frac{A_{max} - A_{min}}{A_{400}}$$
(3)

式中 A_{max} 和 A_{min} 分别为 UV- Vis吸收光谱中极化子 峰极大值和 510 nm附近吸收极小值的强度. 一般来 说, PANI分子链中 H⁺掺杂程度将影响试样的导电 性能. 掺杂程度越大, PANI分子链上的电荷离域性 越充分, 从而使其具有更高的电导率.

9

專膜厚度 d.间的变换天糸式 (1)、式 (2), 得到原位 © 1994-2010 China Academic Journal Electronic Publishing House, All rights reserved. 的诱导期较常压情况大为缩短.其数值从常压时 的 30m in 缩短为 500 MPa时的 2m in 反应明显加 快. 对原位聚合 PANI薄膜的生长, 目前普遍认为 在薄膜形成的诱导期,对应着苯胺阳离子自由基 (即活性单元)的形成及其被吸附到基片表面而成 为初级成核中心的过程^[11].如果活性单元被吸附 的速率变化不大,诱导期的大幅缩短就意味着诱 导期结束时基片表面初级成核中心的数量将大为 减小,导致的结果必然是 PAN I薄膜的产率降低. 然而对饱和期薄膜试样厚度的测试结果 (表 1)却 表明、高压合成条件下薄膜产率得到了大幅度提 高.因此、高压下合成诱导期的明显缩短、饱和期 厚度显著增大这一事实说明、高压条件显著提高 了活性单元的吸附速率,使得基片表面单位时间 内单位面积上吸附的活性单元数量远远大于常压 情况下的数量,这样,沿基片表面切线方向上 PANI 分子链的生长要比沿基片法线方向上的生长更占 优势.这与高压下 PAN I薄膜生长初期的形貌观测 结果(图 3(e))是一致的.于是,在基片表面形成 分子链的二维生长,可以认为,二维生长机制正是 导致高压合成 PAN I薄膜表面形貌呈现网络状结 构 (图 3(f))的关键.

表 1 01 1 M Pa和 500 M Pa压力条件下 PAN I 薄膜的生长 特性

MP a and 500 MP a				
合成压力 / MPa	诱导期 /m in (起止时间)	生长期 /m in (起止时间)	d _f / m	
01 1	30 (0~ 30)	50 (30~ 80)	65 01 6 1	114

 $(2 \sim 10)$

102 0173

1218

2

 $(0 \sim 2)$

500

 Table1
 Properties of the growth of PANI films prepared at 011

 MP a and 500 MPa

对 PANI薄膜的原位生长,多个课题组研究了 合成温度对生长性能的影响^[2,14–16].将本文的实验 结果与之比较,可以看出,合成温度与合成压力对原 位聚合 PANI薄膜生长的影响规律及效果是大不相 同的.提高合成温度,加剧了聚合速度,降低了产率, 薄膜表面形貌都为颗粒状;增加合成压力,既加速聚 合又提高产率,得到的薄膜呈网络状形貌.提高合成 温度或压力。虽然都加速了聚合反应,但对薄膜性能 的影响是不尽相同的.关键就在于高压所引起的反 应加速导致了薄膜生长机制的改变.如上所述,温度 升高所导致的聚合反应加速没有改变薄膜生长机 制,而高压合成条件使得 PANI薄膜的生长由垂直 于基片的刷状生长机制变为沿基片表面切线方向的 二维生长.

从导电性能上看,合成压力对 PANI薄膜性能 的影响很明显.对 PANI薄膜电性能的测试表明, 500MPa高压下合成薄膜的电导率值 1218 S/m比常 压情况 114 S/m提高了一个数量级 (表 1).按照目 前普遍的观点, PANI薄膜的电导率取决于 2个因 素,一是分子链内载流子的迁移,另一个是分子链间 的电接触.与常压合成条件相比,高压合成试样 PA2 NI分子链具有更长的共轭长度,H⁺掺杂程度也较 高,将有益于链内载流子的迁移;而高压合成试样其 致密的纳米网络结构又增强了试样的电接触.这些 都有利于提高薄膜试样的导电性能.

3 结 论

对 PAN I薄膜的厚度进行了原子力显微镜的直接测量和光谱的间接表征. 在 011 MPa和 500 MPa的合成压力下,聚苯胺薄膜厚度 d₄与薄膜 UV- Vis吸收光谱中 400 nm处的吸收强度 A₄₀₀间的关系分别为: d₁= 548A₄₀₀及 d₁= 341A₄₀₀ 比例系数的不同是由于 2种不同压力条件下制备的薄膜表面形貌及致密程度的差异所导致. 合成压力对 PAN I薄膜的 会成压力对 PAN I薄膜的告张,同时提高了薄膜的产率及导电性. PAN I薄膜的高压原位生长属于二维生长, 表面形貌呈现致密的纳米网络状特征; PAN I分子链共轭长度的增加、薄膜试样掺杂程度的提高以及颗粒间接触的加强是改善薄膜试样导电性能的主要因素.

参考文献:

- Bemasik A, W lodarczyk2M isk iew icz J. Luzny W, et al. Lamellar structures formed in spin2cast blends of insulating and conducting polymers [J]. Synthetic M etals 2004, 144(3): 253-257.
- [2] M isra S C K, YadavM, M athur P. Non2lin ear dielectric properties of vacuum deposited nanocrystalline polyaniline thin films [J]. Thin Solid F ilms 2006 514(1/2): 272-277.
- [3] Lin H, Kin B J Choi J H. Characterization of polyaniline thin films prepared by cluster beam deposition methods [J]. Synthetic

温度或压力 虽然都加速了聚合反应,但对薄膜性能 © 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

11

- [4] Guo Y P, Zhou Y. Polyan iline nanofibers fabricated by electro2 chem ical polymerization: am echanistic study [J]. European Poly2 mer Jou m al 2007, 43 (6): 2292- 2297.
- [5] Macdianmid A G. Polyan ilin e and polypyrrole where arewe head?
 ed? [J]. Synthetic Metals 1997, 84 27-34.
- [6] Travain S A, de Souza N C, Balogh D T, et al Study of the growth process of in situ polyaniline deposited films [J]. Journal of Colloid and Interface Science, 2007, 316 (2): 292-297.
- [7] Gu D W, Li J S Liu J L, et al Polyaniline thin films in situ poly2 merized under very high pressure [J]. Synthetic Metals 2005, 150: 175-179.
- [8] Braga G S, Patemo L G, Lina J P H, et al In fluence of the depo2 sition parameters on the morphology and electrical conductivity of PAN I/PSS self2assembled films [J]. Materials Science and Engi2 neering C, 2008, 28 (4): 555 - 562
- [9] Stejskal J, Sapurina J, Proke J, et al. In2situ polymerized polyani2 line films [J]. Synthetic Metals 1999, 105: 195-202
- [10] A yad M M, Shenesh n M A F ihn thickness studies for the chem i2 cally synthesized conducting polyan line [J]. E urop ean Polymer Journa J 2003, 39, 1319- 1324
- [11] Sapurina J Riede A, Stejskal J In2situ polymerized polyaniline films
 3 film formation [J]. Syn thetic Metals 2001, 123 503- 507.

- [12] Srin ivasarao M, Collings D, Philips A, et al Three2 dimensionally ordered array of air bubbles in a polymer film [J]. Science 2001, 292 (6): 79-83
- [13] 李冀蜀,林晨,顾大伟,等.聚苯胺薄膜在不同质子酸溶液中的生长[J].南京工业大学学报:自然科学版,2009,31(2):
 5-9.

Li Jishu, Lin Chen, Gu Dawei, et al. Growth of polyaniline film in different protonic acids [J]. Journal of Nanijing University of Technology. Natural Science Edition, 2009, 31(2): 5-9.

- [14] Ayad M M, G enaey A H, Sabhuddin N, et al The kinetics and spectral studies of the in situ polyaniline film formation [J]. Jour2 nal of Colbid and Interface Science 2003 263 (1): 196- 201
- [15] 李永明, 万梅香. 浸渍聚合法制备透明导电聚苯胺薄膜的研究[J]. 高分子学报, 1998(2): 177-183.
 LiYongning Wan Meixiang Studies of transparent and conducting film of polyaniline by a dipping polymerization method [J].
 Acta Polymerica Sinica 1998(2): 177-183.
- [16] 李冀蜀,赵云,沈临江,等.反应温度对聚苯胺薄膜生长的影响[J].功能材料,2007,38 (增刊):916-918
 Li Jishu, Zhao Yun, Shen Linjiang et al. The effect of reaction temperature on the growth of in situ polymerized polyaniline films
 [J]. Journal of Functional Materials 2007, 38 (S): 916-918